Members of TALE and WUS subfamilies of homeodomain proteins with potentially important functions in development form dimers within each subfamily in rice.
نویسندگان
چکیده
Transacting factors often form homo- and heterodimers and regulate various targets, the type of regulation depending on the dimeric combination. The WUS and TALE subfamilies are two atypical homeodomains in plants. A homeodomain mediates sequence-specific binding to its target DNA and usually consists of 60 amino acid residues, whereas atypical homeodomains have extra amino acid residues in the well-conserved region. The genes OsWUS and OsPRS, which encode atypical homeodomain proteins from the WUS subfamily, and OsBEL and OSH15, which encode those from the TALE subfamily, were isolated from rice and tested for their interactions by yeast two-hybrid analysis. OsWUS and OsPRS formed homodimers and formed heterodimers with each other but did not form dimers with the TALE family homeodomain proteins OSH15 or OsBEL. Likewise, OSH15 and OsBEL formed homodimers and heterodimers but did not form dimers with the WUS family homeodomain proteins OsWUS and OsPRS. These findings suggest that the combinations of dimers are well correlated with the classification of these proteins on the basis of sequence similarity. RT-PCR analysis revealed that expression of OsWUS and OsPRS was detected in the same organs, namely floral buds, roots, and suspension cells. Therefore, it is possible that the proteins encoded by both of these genes function as homo- and heterodimers in planta. These results suggest that, during the evolution of these subfamilies, various combinations of dimers within proteins encoded by paralogous genes were formed and generated independent regulatory networks that enabled complex patterns of plant development.
منابع مشابه
Expression and Purification of Homeodomain
Homeobox genes encode transcription factors which play important roles in the developmental processes of many multicellular organisms. TGIFLX/Y (TGIFLX and TGIFLY) are members of the homeobox superfamily of genes. Their expressions are specifically detected in the human adult testis but their functions are remained to be investigated. In this investigation we cloned full length of TGIFLY cDNA a...
متن کاملRab11 in Disease Progression
Membrane/ protein trafficking in the secretory/ biosynthetic and endocytic pathways is mediated by vesicles. Vesicle trafficking in eukaryotes is regulated by a class of small monomeric GTPases the Rab protein family. Rab proteins represent the largest branch of the Ras superfamily GTPases, and have been concerned in a variety of intracellular vesicle trafficking and different intracellular sig...
متن کاملGenome-wide analysis of the homeodomain-leucine zipper (HD-ZIP) gene family in peach (Prunus persica).
In this study, 33 homeodomain-leucine zipper (HD-ZIP) genes were identified in peach using the HD-ZIP amino acid sequences of Arabidopsis thaliana as a probe. Based on the phylogenetic analysis and the individual gene or protein characteristics, the HD-ZIP gene family in peach can be classified into 4 subfamilies, HD-ZIP I, II, III, and IV, containing 14, 7, 4, and 8 members, respectively. The ...
متن کاملBiochemistry of the tale transcription factors PREP, MEIS, and PBX in vertebrates
TALE (three amino acids loop extension) homeodomain transcription factors are required in various steps of embryo development, in many adult physiological functions, and are involved in important pathologies. This review focuses on the PREP, MEIS, and PBX sub-families of TALE factors and aims at giving information on their biochemical properties, i.e., structure, interactors, and interaction su...
متن کاملI-3: Tale of The Tail: Candidate Genes Involved in Sperm Flagella Formation
Background ISTS defect in which sperm tail is short and fibrous sheath and axoneme are disorganized, is one of the syndromes that cause male infertility. Although a few studies have been done in this regard, its exact etiology in human is unclear yet. Four candidate genes causing ISTS are SPEF2, RABL2B, and A-kinas anchoring proteins genes (AKAP3 and AKAP4). Proteins which coded by SPEF2 and RA...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genes & genetic systems
دوره 80 4 شماره
صفحات -
تاریخ انتشار 2005